687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236 | class mdbox():
"""
Simple 2D Lennard-Jones liquid simulation
Keyword arguments:
box -- boundary conditions in (x,y) direction:
( x > 0 , _ ) = closed boundary at x and -x
( x = 0 , _ ) = no boundary in x-direction
( x < 0 , _ ) = periodic boundary at x and -x
n_bubbles -- number of bubbles (int, default 100)
masses -- array containing particle masses (default 1)
pos -- array of shape (3, n_bubbles) containing positions
vel -- array of scalars with maximum random velocity
radius --
relax -- minimize potential energy on initialization using simulated annealing
grid -- initial spacing in a grid (default True)
Example usage (in a notebook):
import hylleraas.bubblebox as bb
%matplotlib notebook
system = mdbox(n_bubbles = 100, size = (10,10)) #initialize 10 by 10 closed box containing 100 bubbles
system.run() #run simulation interactively
"""
def __init__(self, n_bubbles = 100, masses = None, vel = 0.0, size = (0,0), grid = True, pair_list = True, fields = False, sphere_collisions = False):
# Initialize system
self.sphere_collisions = sphere_collisions
# Boundary conditions
self.size = np.array(size)
self.size2 = np.array(size)*2
self.ndim = len(size)
# obsolete parameter for hard-sphere collisions
self.radius = .1
self.n_bubbles = n_bubbles
# list to hold force algorithms
self.force_stack = (no_force, lj_force)
# array to keep track of forces and interaction parameters
self.interactions = np.ones((self.n_bubbles, self.n_bubbles, 3), dtype = float)
# array to keep track of the positions of the bubbles
self.pos = np.zeros((self.ndim,self.n_bubbles), dtype = float)
# arrange bubbles in grid
n_bubbles_axis = int(np.ceil(n_bubbles**(1/self.ndim)))
grid_axes = []
for i in range(self.size.shape[0]):
grid_axes.append(np.linspace(-self.size[i], self.size[i], n_bubbles_axis+1)[:-1])
self.pos = np.array(np.meshgrid(*grid_axes)).reshape(self.ndim, int(n_bubbles_axis**self.ndim))[:,:self.n_bubbles]
# move to center
self.pos = self.pos - np.mean(self.pos, axis = 1)[:, None]
if masses is None:
self.masses = np.ones(self.n_bubbles, dtype = int)
self.masses_inv = np.array(self.masses, dtype = float)**-1
#self.n_bubbles = n_bubbles
else:
self.masses = masses
self.n_bubbles = len(masses)
self.set_interactions(self.masses)
self.masses_inv = np.array(self.masses, dtype = float)**-1
self.pos_old = self.pos*1 # retain previous timesteps to compute velocities
# all bubbles active by default
self.active = np.ones(self.pos.shape[1], dtype = bool)
# Set velocities (and half-step velocity for v-verlet iterations)
self.vel = np.random.multivariate_normal(np.zeros(self.ndim), vel*np.eye(self.ndim), self.n_bubbles).T
self.vel[:] -= np.mean(self.vel, axis = 1)[:, None]
self.vel_ = self.vel # verlet integrator velocity at previous timestep
# Integrator
self.advance = self.advance_vverlet
# Algorithm for force calculation
self.forces = forces
self.force = lj_force
self.r2_cut = 9.0 #distance cutoff squared for force-calculation
# Time and timestep
self.t = 0
self.dt = 0.001
# Collision counter
self.col = 0
# Prime for special first iteration
self.first_iteration = True
self.iteration = 0
# Pair list for efficient force-calculation
self.pair_list = None
if pair_list:
self.pair_list_update_frequency = 10
self.pair_list_buffer = 1.2
self.pair_list = compute_pair_list(self.pos, self.r2_cut*self.pair_list_buffer, self.size2)
# fields
self.fields = fields
if self.fields:
self.nbins, self.Z = 20, np.zeros((20,20,2), dtype = float)
def resize_box(self, size):
# New boundary conditions
#self.Lx = size[0]
#self.Ly = size[1]
#self.L2x = 2*size[0]
#self.L2y = 2*size[1]
self.size = np.array(size)
self.size2 = np.array(size)*2
def advance_vverlet(self):
"""
Advance one step in time according to the Velocity-Verlet algorithm
"""
if self.first_iteration:
self.Fn = self.forces(self.pos, self.size2, self.interactions, r2_cut = self.r2_cut, pair_list = self.pair_list)
self.first_iteration = False
if self.pair_list is not None:
if self.iteration % self.pair_list_update_frequency == 0:
self.pair_list = compute_pair_list(self.pos, self.r2_cut*self.pair_list_buffer, self.size2)
Fn = self.Fn
# field
if self.fields:
self.Z, dv = gen_field(self, self.nbins, self.Z)
#self.vel_ = .99*self.vel_ + .01*dv.T
Fn += .1*dv.T
self.d_pos = self.vel_*self.dt + .5*Fn*self.dt**2*self.masses_inv
pos_new = self.pos + self.d_pos
forces_new = self.forces(pos_new, self.size2, self.interactions, r2_cut = self.r2_cut, pair_list = self.pair_list)
self.vel_ = self.vel_ + .5*(forces_new + Fn)*self.dt*self.masses_inv
self.Fn = forces_new
# impose PBC
for i in range(self.ndim):
if self.size[i]<0:
pos_new[i, :] = (pos_new[i,:] + self.size[i]) % (self.size2[i]) - self.size[i]
# impose wall and collision boundary conditions
self.vel_, self.col = collisions(pos_new, self.vel_, screen = 10.0, radius = self.radius, size2 = self.size2, masses = self.masses, pair_list = self.pair_list, sphere_collisions = self.sphere_collisions)
#update arrays (in order to retain velocity)
self.vel = (pos_new - self.pos_old)/(2*self.dt)
self.pos_old[:] = self.pos
self.pos[:, self.active] = pos_new[:, self.active]
# Track time
self.t += self.dt
self.iteration += 1
def advance_euler(self):
"""
Advance one step in time according to the explicit Euler algorithm
"""
self.vel_ += self.forces(self.pos, self.size2, self.interactions, r2_cut = self.r2_cut, pair_list = self.pair_list)*self.dt*self.masses_inv
#self.vel += self.forces(self.pos, self.size2, self.interactions, self.r2_cut, self.force)*self.dt*self.masses_inv
self.pos[:,self.active] += self.vel_[:,self.active]*self.dt
# impose PBC
for i in range(self.ndim):
if self.size[i]<0:
self.pos[i, :] = (self.pos[i,:] + self.size[i]) % (self.size2[i]) - self.size[i]
# impose wall and collision bounary conditions
self.vel_, self.col = collisions(self.pos, self.vel_, screen = 10.0, radius = self.radius, size2 = self.size2, masses = self.masses, pair_list = self.pair_list, sphere_collisions = self.sphere_collisions)
#update arrays (in order to retain velocity)
#self.vel = (pos_new - self.pos_old)/(2*self.dt)
#self.pos_old[:] = self.pos
#self.pos[:, self.active] = pos_new[:, self.active]
# Track time
self.t += self.dt
self.iteration += 1
def compute_energy(self):
"""
Compute total energy of system
"""
return self.compute_potential_energy() + self.compute_kinetic_energy()
def compute_potential_energy(self):
"""
Compute total potential energy in system
"""
#return lj_potential(self.pos, self.interactions, L2x = self.L2x, L2y = self.L2y, r2_cut = self.r2_cut)
return lj_potential(self.pos, self.size2, interactions = self.interactions, r2_cut = self.r2_cut, force = self.force, pair_list = self.pair_list)
def compute_kinetic_energy(self):
"""
Compute total kinetic energy in system
"""
# Vektorisert funksjon med hensyn på ytelse
return .5*np.sum(self.masses*np.sum(self.vel_**2, axis = 0))
def kinetic_energies(self):
"""
Compute kinetic energy of each bubble
"""
# Vektorisert funksjon med hensyn på ytelse
return .5*self.masses*np.sum(self.vel_**2, axis = 0)
def evolve(self, t = 1.0):
"""
Let system evolve in time for t seconds
"""
t1 = self.t+t
while self.t<t1:
self.advance()
"""
Setters
"""
def set_size(self, size):
"""
Set new size of box / alias for resize
"""
self.resize_box(size)
def set_charges(self, charges):
"""
Set charges for Coulomb interactions
Arguments
===
- charges: a numpy.ndarray (or list) containing float or integer charges for all particles
"""
assert(len(charges) == self.n_bubbles), "Number of charges must equal number of bubbles (%i)." %self.n_bubbles
for i in range(self.n_bubbles):
for j in range(self.n_bubbles):
self.interactions[i,j] = np.array([charges[i],charges[j]])
def set_masses(self, masses, bubbles = None):
"""
Set masses
Arguments
===
- masses: a numpy.ndarray (or list) containing float or integer charges for all particles
"""
if bubbles is None:
self.masses[:] = masses
else:
self.masses[bubbles] = masses
self.masses_inv = np.array(self.masses, dtype = float)**-1
def set_forces(self, force, bubbles_a = None, bubbles_b = None, force_params = np.array([0,0])):
"""
Set the force acting between bubbles_a and bubbles_b (or all)
"""
if bubbles_a is None:
bubbles_a_ = np.array(np.arange(self.n_bubbles), dtype = int)
else:
if type(bubbles_a) is np.ndarray and bubbles_a.dtype is np.dtype('bool'):
bubbles_a_ = np.array(np.arange(self.n_bubbles)[bubbles_a], dtype = int)
else:
bubbles_a_ = bubbles_a
if bubbles_b is None:
bubbles_b_ = np.array(np.arange(self.n_bubbles), dtype = int)
else:
if type(bubbles_b) is np.ndarray and bubbles_b.dtype is np.dtype('bool'):
bubbles_b_ = np.array(np.arange(self.n_bubbles)[bubbles_b], dtype = int)
else:
bubbles_b_ = bubbles_b
nx, ny = np.array(np.meshgrid(bubbles_a_,bubbles_b_)).reshape(2,-1)
# set pointer to the force function in the force stack
self.interactions[nx,ny,:] = force()
# set parameters to use for the specific pairs of particles
self.interactions[nx,ny,1] = force_params[0]
self.interactions[nx,ny,2] = force_params[1]
def set_vel(self, vel):
"""
set manually the velocities of the system
"""
assert(np.all(vel.shape==self.vel.shape)), "incorrect shape of velocities"
self.vel = vel
self.vel_ = self.vel # verlet integrator velocity at previous timestep
def set_pos(self, pos):
assert(pos.shape[0] == len(self.size)), "incorrect shape of pos"
assert(pos.shape[1] == self.n_bubbles), "incorrect shape of pos"
self.pos = pos
def set_interactions(self, masses):
"""
Placeholder for proper parametrization of LJ-interactions
"""
#self.interactions = np.ones((self.n_bubbles, self.n_bubbles, 3), dtype = float)
epsilons = np.linspace(.5,10,100)
sigmas = np.linspace(1,np.sqrt(2), 100)
for i in range(self.n_bubbles):
mi = int(masses[i])
for j in range(i+1, self.n_bubbles):
mj = int(masses[j])
eps = np.sqrt(epsilons[mi]*epsilons[mj])
sig = sigmas[mi] + sigmas[mj]
self.interactions[i,j] = [1, eps, sig]
"""
Visualization tools (some obsolete to be deleted)
"""
def visualize_state(self, axis = False, figsize = None):
"""
Show an image of the current state with positions, velocities (as arrows) and boundaries of the box.
"""
if figsize is None:
figsize = (6,6)
if self.L2x != 0 and self.L2y != 0:
figsize = (4, 4*np.abs(self.L2y/self.L2x))
plt.rcParams["figure.figsize"] = figsize
col = colorscheme()
plt.figure(figsize = figsize)
plt.plot([-self.Lx, self.Lx, self.Lx, -self.Lx, -self.Lx],[-self.Ly, -self.Ly, self.Ly, self.Ly, -self.Ly], color = (0,0,0), linewidth = 2)
plt.plot(self.pos[0], self.pos[1], 'o', alpha = .4, markersize = 8*1.8, color = col.getcol(.5))
plt.plot(self.pos[0], self.pos[1], '.', alpha = 1, markersize = 10, color = (0,0,0))
for i in range(len(self.vel[0])):
plt.plot([self.pos[0,i], self.pos[0,i] + self.vel[0,i]],[self.pos[1,i], self.pos[1,i] + self.vel[1,i]], "-", color = (0,0,0))
th = np.arctan2(self.vel[1,i],self.vel[0,i])
plt.text(self.pos[0,i] + self.vel[0,i],self.pos[1,i] + self.vel[1,i], "▲", rotation = -90+360*th/(2*np.pi),ha = "center", va = "center") #, color = (0,0,0), fontsize = 20, rotation=0, ha = "center", va = "center")
plt.xlim(-self.Lx-1, self.Lx+1)
if self.Lx == 0:
plt.xlim(-11, 11)
plt.ylim(-self.Ly-1, self.Ly+1)
if self.Ly == 0:
plt.ylim(-11, 11)
if not axis:
plt.axis("off")
plt.show()
#def run(self, n_steps_per_vis = 5, interval = 1):
# run_system = animated_system(system = self, n_steps_per_vis=n_steps_per_vis, interval = interval)
# plt.show()
def run(self, nsteps, n_iterations_per_step = 1):
for i in range(nsteps):
for j in range(n_iterations_per_step):
self.advance()
self.update_view()
def view(self, viewer = ev.MDView):
self.mview = viewer(self)
return self.mview
def evince(self, realism = True, dof = True, sao = True, focus = 10, aperture = 0.0001, max_blur = 0.001):
"""
Create high-quality 3D view using Evince
"""
# extract bonds (harmonic oscillator interactions)
bonds = ev.spotlight.extract_bonds(self)
self.mview = ev.SpotlightView(self, bonds = bonds, realism = realism, dof = dof, sao = sao, focus = focus, aperture=aperture, max_blur=max_blur)
return self.mview
def update_view(self):
self.mview.pos = self.pos.T.tolist()
def save_view(self, filename, title =""):
embed_minimal_html(filename, [self.mview], title)
# "algebra"
def __add__(self, other):
if type(other) in [float, int, np.ndarray]:
ret = copy.deepcopy(self)
if type(other) is np.ndarray:
ret.pos = self.pos + other[:, None]
else:
ret.pos = self.pos + other
return ret
else:
#np.concatenate([b.interactions, b.interactions], axis = 3).shape
interactions = np.zeros((self.n_bubbles+other.n_bubbles, self.n_bubbles+other.n_bubbles, 3), dtype = float )
interactions[:self.n_bubbles,:self.n_bubbles,:] = self.interactions
interactions[self.n_bubbles:,self.n_bubbles:,:] = other.interactions
# determine unique interactions
masses = np.concatenate([self.masses, other.masses])
ui = np.unique(masses )
UI = np.zeros((len(ui), len(ui), 3), dtype = float)
#UI = {}
# locate force definitions
for i in range(len(ui)):
for j in range(1,len(ui)):
for l in range(len(masses)):
if l==i:
for k in range(len(masses)):
if k==j:
UI[i,j] = interactions[l,k]
UI[j,i] = interactions[l,k]
break
break
# set interactions accordingly
for i in range(len(self.masses), len(self.masses)+len(other.masses)):
for j in range(len(self.masses)):
interactions[i,j] = UI[ui==masses[i], ui==masses[j]]
# determine size
size = []
for i in range(len(self.size)):
size.append(np.sign(np.sign(self.size[i])+np.sign(other.size[i]))*max(abs(self.size[i]), abs(other.size[i])))
ret = mdbox(self.n_bubbles+other.n_bubbles, size = size)
ret.interactions = interactions
ret.set_masses(masses)
ret.vel_ = np.concatenate([self.vel_, other.vel_], axis = 1)
ret.vel = np.concatenate([self.vel, other.vel], axis = 1)
ret.pos = np.concatenate([self.pos, other.pos], axis = 1)
return ret
def __radd__(self, other):
return self.__add__(other)
def __mul__(self, other):
if type(other) is int:
return extend_system(self, other)
if type(other) is float:
ret = copy.deepcopy(self)
ret.pos *= other
return ret
def __rmul__(self, other):
return self.__mul__(other)
def __matmul__(self, other):
ret = copy.deepcopy(self)
ret.pos = self.pos.T.dot(other).T
return ret
def __rmatmul__(self, other):
ret = copy.deepcopy(self)
ret.pos = other.dot(self.pos)
return ret
|