Solid Harmonics module
contracted_norm(a, w, l)
Compute normalization factor of contracted basis function
Source code in braketlab/solid_harmonics.py
169 170 171 172 173 174 |
|
f(m)
factorial m!
Source code in braketlab/solid_harmonics.py
144 145 146 147 148 |
|
get_Nao(a, l, m)
return normalized AO in sympy-format a = exponent l = angular quantum number m = magnetic quantum number
Source code in braketlab/solid_harmonics.py
122 123 124 125 126 127 128 129 130 131 |
|
get_Nao_at(pos, a, l, m)
return normalized AO in sympy-format a = exponent l = angular quantum number m = magnetic quantum number
Source code in braketlab/solid_harmonics.py
133 134 135 136 137 138 139 140 141 |
|
get_Nao_lambda(a, l, m)
return a normalized solid harmonic gaussian in numpy lambda format, for convenient evaluation.
Note that every function is centered in (0,0,0) translations should be performed retrospectively
Source code in braketlab/solid_harmonics.py
157 158 159 160 161 162 163 164 165 166 |
|
get_Npi(a_i, l)
Returns the normalization prefactor for S_lm(a_i, r) a_i = exponent l = angular quantum number
Source code in braketlab/solid_harmonics.py
114 115 116 117 118 119 120 |
|
get_Slm(l, m)
return the sympy real solid harmonic gaussian S_{lm}(r) as presented in table 6.3 of Helgaker, Jørgensen and Olsen (page 211)
Source code in braketlab/solid_harmonics.py
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
|
get_ao(a, l, m)
return unnormalized solid harmonic gaussian for quantum numbers l, m a = exponent
Source code in braketlab/solid_harmonics.py
84 85 86 87 88 89 90 91 92 93 94 |
|
get_ao_at(pos, a, l, m)
return unnormalized solid harmonic gaussian for quantum numbers l, m a = exponent
Source code in braketlab/solid_harmonics.py
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
|
get_contracted(a, w, l, m, representation='numeric')
Generates Solid Harmonic Gaussian lambda functions a = exponent
Source code in braketlab/solid_harmonics.py
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
|
get_contracted_at(pos, a, w, l, m)
Generates Solid Harmonic Gaussian lambda functions a = exponents
Source code in braketlab/solid_harmonics.py
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
|
get_contracted_sympy(a, w, l, m)
Generates Solid Harmonic Gaussian lambda functions a = exponents
Source code in braketlab/solid_harmonics.py
213 214 215 216 217 218 219 220 221 222 223 224 225 |
|
norm_extra(l)
Factor required that is not accounted for in eq. 3.3 in LSDalton manual
Source code in braketlab/solid_harmonics.py
150 151 152 153 154 155 |
|